Skip to main content

Biomechanical Properties of the Trabecular Meshwork in Aqueous Humor Outflow Resistance

  • Chapter
  • First Online:
Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye

Abstract

Glaucoma is a multi-factorial disease often associated with elevated intraocular pressure and increased rigidity of the trabecular meshwork (TM). Stiffening of inner wall endothelial cells of the Schlemm’s canal (SC) has also been documented with glaucoma. Such stiffening is often associated with changes in the extracellular matrix and thus plays a critical role in maintenance of aqueous outflow homeostasis. Considering that biomechanics and topographical cues from the matrix significantly influence cellular responses, it is imperative to understand the biomechanical attributes of the TM. Here, we review relevant studies that have measured the elastic moduli of the TM from humans and a variety of non-human animal models including the various methods used. The reported elastic moduli vary from kilopascal to megapascal range depending on the method utilized in excised tissues. Multiple attempts are currently underway for in vivo quantifications which would significantly be beneficial for diagnosis of the disease. We conclude the chapter by discussing briefly the cellular consequences to the dynamically changing matrix stiffness and its implication in disease etiology and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seddon JM. Genetic and environmental underpinnings to age-related ocular diseases. Invest Ophthalmol Vis Sci. 2013;54:ORSF28–30. https://doi.org/10.1167/iovs.13-13234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chew EY. Nutrition effects on ocular diseases in the aging eye. Invest Ophthalmol Vis Sci. 2013;54:ORSF42–7. https://doi.org/10.1167/iovs13-12914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quigley HA. Open-angle glaucoma. N Engl J Med. 1993;328:1097–106. https://doi.org/10.1056/NEJM199304153281507.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82:545–57. https://doi.org/10.1016/j.exer.2005.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gottanka J, Johnson DH, Martus P, Lutjen-Drecoll E. Severity of optic nerve damage in eyes with POAG is correlated with changes in the trabecular meshwork. J Glaucoma. 1997;6:123–32.

    Article  CAS  Google Scholar 

  6. Lutjen-Drecoll E. Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res. 2005;81:1–4. https://doi.org/10.1016/j.exer.2005.02.008.

    Article  CAS  PubMed  Google Scholar 

  7. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I. Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res. 1993;56:683–92.

    Article  CAS  Google Scholar 

  8. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7. https://doi.org/10.1136/bjo.2005.081224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klein R, Klein BE. The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci. 2013;54:ORSF5–ORSF13. https://doi.org/10.1167/iovs.13-12789.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alvarado J, Murphy C, Polansky J, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21:714–27.

    CAS  PubMed  Google Scholar 

  11. Alvarado J. Presence of matrix vesicles in the trabecular meshwork of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 1982;218:171–6.

    Article  Google Scholar 

  12. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91:564–79. https://doi.org/10.1016/S0161-6420(84)34248-8.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki M, Segawa K, Urakawa Y. Age-related changes in the trabecular meshwork of the normal human eye. Jpn J Ophthalmol. 1987;31:558–69.

    CAS  PubMed  Google Scholar 

  14. McMenamin PG, Lee WR, Aitken DA. Age-related changes in the human outflow apparatus. Ophthalmology. 1986;93:194–209.

    Article  CAS  Google Scholar 

  15. Lütjen-Drecoll E, Rohen JW. Morphology of aqueous outflow pathways in normal and glaucomatous eyes. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. St. Louis: Mosby; 1996. p. 89–123.

    Google Scholar 

  16. Tripathi RC. Pathologic anatomy of the outflow pathway of aqueous humour in chronic simple glaucoma. Exp Eye Res. 1977;25:403–7. https://doi.org/10.1016/S0014-4835(77)80035-3.

    Article  PubMed  Google Scholar 

  17. Tripathi RC, Tripathi BJ. Contractile protein alteration in trabecular endothelium in primary open-angle glaucoma. Exp Eye Res. 1980;31:721–4. https://doi.org/10.1016/S0014-4835(80)80056-X.

    Article  CAS  PubMed  Google Scholar 

  18. Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res. 2009;88:648–55. https://doi.org/10.1016/j.exer.2009.02.007.

    Article  CAS  PubMed  Google Scholar 

  19. Lütjen-Drecoll E. Functional morphology of the trabecular meshwork in primate eyes. Prog Retina Eye Res. 1999;18:91–119. https://doi.org/10.1016/S1350-9462(98)00011-1.

    Article  Google Scholar 

  20. Lütjen-Drecoll E, Schenholm M, Tamm E, Tengblad A. Visualization of hyaluronic acid in the anterior segment of rabbit and monkey eyes. Exp Eye Res. 1990;51:55–63. https://doi.org/10.1016/0014-4835(90)90170-Y.

    Article  PubMed  Google Scholar 

  21. Lütjen-Drecoll E, Tektas OY. In: Dartt DA, editor. Encyclopedia of the eye. New York: Academic Press; 2010. p. 224–8.

    Chapter  Google Scholar 

  22. Tektas O-Y, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res. 2009;88:769–75. https://doi.org/10.1016/j.exer.2008.11.025.

    Article  CAS  PubMed  Google Scholar 

  23. Toris CB, Yablonski ME, Wang Y-L, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 1999;127:407–12.

    Article  CAS  Google Scholar 

  24. Toris CB, Koepsell SA, Yablonski ME, Camras CB. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma. 2002;11:253–8.

    Article  Google Scholar 

  25. Johnson M, Shapiro A, Ethier CR, Kamm RD. Modulation of outflow resistance by the pores of the inner wall endothelium. Invest Ophthalmol Vis Sci. 1992;33:1670–5.

    CAS  PubMed  Google Scholar 

  26. Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng. 2007;9:1–34. https://doi.org/10.1146/annurev.bioeng.9.060906.151927.

    Article  CAS  PubMed  Google Scholar 

  27. Mendez MG, Janmey PA. Transcription factor regulation by mechanical stress. Int J Biochem Cell Biol. 2012;44:728–32. https://doi.org/10.1016/j.biocel.2012.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43. https://doi.org/10.1126/science.1116995.

    Article  CAS  PubMed  Google Scholar 

  29. Janmey PA, Wells RG, Assoian RK, McCulloch CA. From tissue mechanics to transcription factors. Differentiation. 2013;86:112–20. https://doi.org/10.1016/j.diff.2013.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engler A, et al. Substrate compliance versus ligand density in cell on gel responses. Biophys J. 2004;86:617–28. https://doi.org/10.1016/S0006-3495(04)74140-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Engler AJ, Rehfeldt F, Sen S, Discher DE. In: Yu-Li W, Dennis ED, editors. Methods in cell biology, vol. 83. New York: Academic Press; 2007. p. 521–45.

    Google Scholar 

  32. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  33. Califano JP, Reinhart-King CA. The effects of substrate elasticity on endothelial cell network formation and traction force generation. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:3343–5. https://doi.org/10.1109/iembs.2009.5333194.

    Article  Google Scholar 

  34. Califano JP, Reinhart-King CA. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng. 2010;3:68–75. https://doi.org/10.1007/s12195-010-0102-6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Casey MK-R, Shawn PC, Joseph PC, Brooke NS, Cynthia AR-K. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys Biol. 2011;8:015009.

    Article  Google Scholar 

  36. Kraning-Rush CM, Carey SP, Califano JP, Reinhart-King CA. Quantifying traction stresses in adherent cells. Methods Cell Biol. 2012;110:139–78. https://doi.org/10.1016/b978-0-12-388403-9.00006-0.

    Article  PubMed  Google Scholar 

  37. Lepple-Wienhues A, Stahl F, Wiederholt M. Differential smooth muscle-like contractile properties of trabecular meshwork and ciliary muscle. Exp Eye Res. 1991;53:33–8. https://doi.org/10.1016/0014-4835(91)90141-Z.

    Article  CAS  PubMed  Google Scholar 

  38. Wiederholt M, Lepple-Wienhues A, Stahl E. Electrical properties and contractility of the trabecular meshwork. Exp Eye Res. 1992;55(Suppl 1):41. https://doi.org/10.1016/0014-4835(92)90345-S.

    Article  Google Scholar 

  39. Fuchshofer R, Tamm ER. In: Dartt DA, editor. Encyclopedia of the eye. New York: Academic Press; 2010. p. 28–36.

    Chapter  Google Scholar 

  40. Tamm ER, Braunger BM, Fuchshofer R. In: Hejtmancik JF, John MN, editors. Progress in molecular biology and translational science, vol. 134. New York: Academic Press; 2015. p. 301–14.

    Google Scholar 

  41. Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: a unifying concept of disease mechanisms and causative treatment. Eur J. Pharm Biopharm. 2015;95:173–81. https://doi.org/10.1016/j.ejpb.2015.04.029.

    Article  PubMed  Google Scholar 

  42. Rao PV, Deng P, Sasaki Y, Epstein DL. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility. Exp Eye Res. 2005;80:197–206. https://doi.org/10.1016/j.exer.2004.08.029.

    Article  CAS  PubMed  Google Scholar 

  43. Pattabiraman PP, Rao PV. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am J Physiol Cell Physiol. 2010;298:C749–63. https://doi.org/10.1152/ajpcell.00317.2009.

    Article  CAS  PubMed  Google Scholar 

  44. Ren R, et al. Netarsudil increases outflow facility in human eyes through multiple mechanisms. Invest Ophthalmol Vis Sci. 2016;57:6197–209. https://doi.org/10.1167/iovs.16-20189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res. 2009;88:656–70. https://doi.org/10.1016/j.exer.2008.11.033.

    Article  CAS  PubMed  Google Scholar 

  46. McDonnell F, Dismuke WM, Overby DR, Stamer WD. Pharmacological regulation of outflow resistance distal to Schlemm’s Canal. Am J Physiol Cell Physiol. 2018; https://doi.org/10.1152/ajpcell.00024.2018.

  47. Carreon TA, Edwards G, Wang H, Bhattacharya SK. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res. 2017;158:59–66. https://doi.org/10.1016/j.exer.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  48. Cha EDK, Xu J, Gong L, Gong H. Variations in active outflow along the trabecular outflow pathway. Exp Eye Res. 2016;146:354–60. https://doi.org/10.1016/j.exer.2016.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Kater AW, Melamed S, Epstein DL. Patterns of aqueous humor outflow in glaucomatous and nonglaucomatous human eyes. A tracer study using cationized ferritin. Arch Ophthalmol. 1989;107:572–6.

    Article  Google Scholar 

  50. Hann CR, Bahler CK, Johnson DH. Cationic ferritin and segmental flow through the trabecular meshwork. Invest Ophthalmol Vis Sci. 2005;46:1–7. https://doi.org/10.1167/iovs.04-0800.

    Article  PubMed  Google Scholar 

  51. Swaminathan SS, Oh D-J, Kang MH, Rhee DJ. Aqueous outflow: segmental and distal flow. J Cataract Refract Surg. 2014;40:1263–72. https://doi.org/10.1016/j.jcrs.2014.06.020.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vranka JA, Acott TS. Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork. Exp Eye Res. 2016; https://doi.org/10.1016/j.exer.2016.06.009.

  53. Vranka JA, et al. Biomechanical rigidity and quantitative proteomics analysis of segmental regions of the trabecular meshwork at physiologic and elevated pressures. Invest Ophthalmol Vis Sci. 2018;59:246–59. https://doi.org/10.1167/iovs.17-22759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnstone MA. The aqueous outflow system as a mechanical pump - evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma. 2004;13:421–38. https://doi.org/10.1097/01.ijg.0000131757.63542.24.

    Article  PubMed  Google Scholar 

  55. Li P, Shen TT, Johnstone M, Wang RK. Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomed Opt Express. 2013;4:2051–65. https://doi.org/10.1364/boe.4.002051.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Last JA, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52:2147–52. https://doi.org/10.1167/iovs.10-6342.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Raghunathan VK, et al. Glaucomatous cell derived matrices differentially modulate non-glaucomatous trabecular meshwork cellular behavior. Acta Biomater. 2018;71:444–59. https://doi.org/10.1016/j.actbio.2018.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Morgan JT, Raghunathan VK, Thomasy SM, Murphy CJ, Russell P. Robust and artifact-free mounting of tissue samples for atomic force microscopy. BioTechniques. 2014;56:40–2. https://doi.org/10.2144/000114126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang K, et al. Estimating human trabecular meshwork stiffness by numerical modeling and advanced OCT imaging. Invest Ophthalmol Vis Sci. 2017;58:4809–17. https://doi.org/10.1167/iovs.17-22175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Camras LJ, Stamer WD, Epstein D, Gonzalez P, Yuan F. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Invest Ophthalmol Vis Sci. 2012;53:5242–50. https://doi.org/10.1167/iovs.12-9825.

    Article  PubMed  Google Scholar 

  61. Camras LJ, Stamer WD, Epstein D, Gonzalez P, Yuan F. Circumferential tensile stiffness of glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci. 2014;55:814–23. https://doi.org/10.1167/iovs.13-13091.

    Article  PubMed  Google Scholar 

  62. Camras LJ, Stamer WD, Epstein D, Gonzalez P, Yuan F. Erratum. Invest Ophthalmol Vis Sci. 2014;55:2316. https://doi.org/10.1167/iovs.12-9825a.

    Article  Google Scholar 

  63. Chang JY, Folz SJ, Laryea SN, Overby DR. Multi-scale analysis of segmental outflow patterns in human trabecular meshwork with changing intraocular pressure. J Ocul Pharmacol Ther. 2014;30:213–23. https://doi.org/10.1089/jop.2013.0182.

    Article  CAS  PubMed  Google Scholar 

  64. Keller KE, Bradley JM, Vranka JA, Acott TS. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci. 2011;52:5049–57. https://doi.org/10.1167/iovs.10-6948.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Overby DR. The role of segmental outflow in the trabecular meshwork. ARVO SIG, e-SIG # 1221, 2010.

    Google Scholar 

  66. Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 2012;23:135–43. https://doi.org/10.1097/ICU.0b013e32834ff23e.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal stroma. Exp Eye Res. 2013;116:47–54. https://doi.org/10.1016/j.exer.2013.07.016.

    Article  CAS  PubMed  Google Scholar 

  68. Hatami-Marbini H, Rahimi A. Effects of bathing solution on tensile properties of the cornea. Exp Eye Res. 2014; https://doi.org/10.1016/j.exer.2013.11.017.

  69. Hatami-Marbini H, Rahimi A. Evaluation of hydration effects on tensile properties of bovine corneas. J Cataract Refract Surg. 2015;41:644–51. https://doi.org/10.1016/j.jcrs.2014.07.029.

    Article  PubMed  Google Scholar 

  70. Hatami-Marbini H, Rahimi A. The relation between hydration and mechanical behavior of bovine cornea in tension. J Mech Behav Biomed Mater. 2014;36:90–7. https://doi.org/10.1016/j.jmbbm.2014.03.011.

    Article  PubMed  Google Scholar 

  71. Johnson M, Schuman JS, Kagemann L. Trabecular meshwork stiffness in the living human eye. Invest Ophthalmol Vis Sci. 2015;56:3541.

    Article  Google Scholar 

  72. Pant AD, Kagemann L, Schuman JS, Sigal IA, Amini R. An imaged-based inverse finite element method to determine in-vivo mechanical properties of the human trabecular meshwork. J Model Ophthalmol. 2017;1:100–11.

    PubMed  PubMed Central  Google Scholar 

  73. Stewart WC, Magrath GN, Demos CM, Nelson LA, Stewart JA. Predictive value of the efficacy of glaucoma medications in animal models: preclinical to regulatory studies. Br J Ophthalmol. 2011;95:1355–60. https://doi.org/10.1136/bjo.2010.188508.

    Article  PubMed  Google Scholar 

  74. Johnstone MA, Grant WM. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973;75:365–83.

    Article  CAS  Google Scholar 

  75. Zhang Y, Toris CB, Liu Y, Ye W, Gong H. Morphological and hydrodynamic correlates in monkey eyes with laser induced glaucoma. Exp Eye Res. 2009;89:748–56. https://doi.org/10.1016/j.exer.2009.06.015.

    Article  CAS  PubMed  Google Scholar 

  76. Melamed S, Epstein DL. Alterations of aqueous humour outflow following argon laser trabeculoplasty in monkeys. Br J Ophthalmol. 1987;71:776–81.

    Article  CAS  Google Scholar 

  77. Melamed S, Pei J, Epstein DL. Delayed response to argon laser trabeculoplasty in monkeys. Morphological and morphometric analysis. Arch Ophthalmol. 1986;104:1078–83.

    Article  CAS  Google Scholar 

  78. Koss MC, March WF, Nordquist RE, Gherezghiher T. Acute intraocular pressure elevation produced by argon laser trabeculoplasty in the cynomolgus monkey. Arch Ophthalmol. 1984;102:1699–703.

    Article  CAS  Google Scholar 

  79. Harwerth RS, et al. Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res. 2002;21:91–125.

    Article  Google Scholar 

  80. Raghunathan V, et al. Biomechanical, ultrastructural, and electrophysiological characterization of the non-human primate experimental glaucoma model. Sci Rep. 2017;7:14329. https://doi.org/10.1038/s41598-017-14720-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li G, et al. Disease progression in iridocorneal angle tissues of BMP2-induced ocular hypertensive mice with optical coherence tomography. Mol Vis. 2014;20:1695–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3–12. https://doi.org/10.1016/j.exer.2016.07.011.

    Article  CAS  PubMed  Google Scholar 

  83. Wang K, et al. The relationship between outflow resistance and trabecular meshwork stiffness in mice. Sci Rep. 2018;8:5848. https://doi.org/10.1038/s41598-018-24165-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Whitlock NA, McKnight B, Corcoran KN, Rodriguez LA, Rice DS. Increased intraocular pressure in mice treated with dexamethasone. Invest Ophthalmol Vis Sci. 2010;51:6496–503. https://doi.org/10.1167/iovs.10-5430.

    Article  PubMed  Google Scholar 

  85. Weinreb RN, Polansky JR, Kramer SG, Baxter JD. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci. 1985;26:170–5.

    CAS  PubMed  Google Scholar 

  86. Huang J, Camras LJ, Yuan F. Mechanical analysis of rat trabecular meshwork. Soft Matter. 2015; https://doi.org/10.1039/c4sm01949k.

  87. Yuan F, Camras LJ, Gonzalez P. Trabecular meshwork stiffness in ex vivo perfused porcine eyes. Invest Ophthalmol Vis Sci. 2011;52:6693.

    Google Scholar 

  88. Ebenstein DM, Pruitt LA. Nanoindentation of biological materials. Nano Tod. 2006;1:26–33. https://doi.org/10.1016/S1748-0132(06)70077-9.

    Article  Google Scholar 

  89. Oyen ML. Nanoindentation of biological and biomimetic materials. Exp Tech. 2013;37:73–87. https://doi.org/10.1111/j.1747-1567.2011.00716.x.

    Article  Google Scholar 

  90. Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res. 2013;115:41–6. https://doi.org/10.1016/j.exer.2013.06.004.

    Article  CAS  PubMed  Google Scholar 

  91. Harding J, Sneddon I. The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Cambridge: Cambridge University Press; 2008. p. 16–26.

    Google Scholar 

  92. Love AEH. Boussingesq’s problem for a rigid cone. Q J Math. 1939;10:161–75.

    Article  Google Scholar 

  93. Cheng L, Xia X, Scriven LE, Gerberich WW. Spherical-tip indentation of viscoelastic material. Mech Mater. 2005;37:213–26. https://doi.org/10.1016/j.mechmat.2004.03.002.

    Article  Google Scholar 

  94. Cheng Y-T, Cheng C-M. Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater Sci Eng A. 2005;409:93–9. https://doi.org/10.1016/j.msea.2005.05.118.

    Article  CAS  Google Scholar 

  95. Rodriguez ML, McGarry PJ, Sniadecki NJ. Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev. 2013;65:060801. https://doi.org/10.1115/1.4025355.

    Article  Google Scholar 

  96. Rodríguez R, Gutierrez I. Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mater Sci Eng A. 2003;361:377–84. https://doi.org/10.1016/S0921-5093(03)00563-X.

    Article  CAS  Google Scholar 

  97. Oliver WC, Pharr GM. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  CAS  Google Scholar 

  98. Pharr G, Oliver W, Brotzen F. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7:613–7.

    Article  CAS  Google Scholar 

  99. Gasiorowski JZ, Murphy CJ, Nealey PF. Biophysical cues and cell behavior: the big impact of little things. Annu Rev Biomed Eng. 2013;15:155–76. https://doi.org/10.1146/annurev-bioeng-071811-150021.

    Article  CAS  PubMed  Google Scholar 

  100. Gasiorowski JZ, Russell P. Biological properties of trabecular meshwork cells. Exp Eye Res. 2009;88:671–5. https://doi.org/10.1016/j.exer.2008.08.006.

    Article  CAS  PubMed  Google Scholar 

  101. Schlunck G, et al. Substrate rigidity modulates cell–matrix interactions and protein expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2008;49:262–9. https://doi.org/10.1167/iovs.07-0956.

    Article  PubMed  Google Scholar 

  102. Han H, Wecker T, Grehn F, Schlunck G. Elasticity-dependent modulation of TGF-β responses in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2011;52:2889–96.

    Article  CAS  Google Scholar 

  103. Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFbeta have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res. 2013;115:1–12. https://doi.org/10.1016/j.exer.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  104. Raghunathan VK, et al. Role of substratum stiffness in modulating genes associated with extracellular matrix and mechanotransducers YAP and TAZ. Invest Ophthalmol Vis Sci. 2012;54:378–86.

    Article  Google Scholar 

  105. Babizhayev MA, Yegorov YE. Senescent phenotype of trabecular meshwork cells displays biomarkers in primary open-angle glaucoma. Curr Mol Med. 2011;11:528–52.

    Article  CAS  Google Scholar 

  106. Morgan JT, Raghunathan VK, Chang Y-R, Murphy CJ, Russell P. Wnt inhibition induces persistent increases in intrinsic stiffness of human trabecular meshwork cells. Exp Eye Res. 2015;132:174–8.

    Article  CAS  Google Scholar 

  107. Morgan JT, Raghunathan VK, Chang Y-R, Murphy CJ, Russell P. The intrinsic stiffness of human trabecular meshwork cells increases with senescence. Oncotarget. 2015; https://doi.org/10.18632/oncotarget.3798.

  108. Raghunathan VK, et al. Dexamethasone stiffens trabecular meshwork, trabecular meshwork cells, and matrix. Invest Ophthalmol Vis Sci. 2015;56:4447–59. https://doi.org/10.1167/iovs.15-16739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wood JA, et al. Substratum compliance regulates human trabecular meshwork cell behaviors and response to latrunculin B. Invest Ophthalmol Vis Sci. 2011;52:9298–303. https://doi.org/10.1167/iovs.11-7857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thomasy SM, Wood JA, Kass PH, Murphy CJ, Russell P. Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2012;53:952–8. https://doi.org/10.1167/iovs.11-8526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomasy SM, Morgan JT, Wood JA, Murphy CJ, Russell P. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells. Exp Eye Res. 2013;113:66–73. https://doi.org/10.1016/j.exer.2013.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McKee CT, et al. The effect of biophysical attributes of the ocular trabecular meshwork associated with glaucoma on the cell response to therapeutic agents. Biomaterials. 2011;32:2417–23. https://doi.org/10.1016/j.biomaterials.2010.11.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Russell P, Gasiorowski JZ, Nealy PF, Murphy CJ. Response of human trabecular meshwork cells to topographic cues on the nanoscale level. Invest Ophthalmol Vis Sci. 2008;49:629–35. https://doi.org/10.1167/iovs.07-1192.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Baetz NW, Hoffman EA, Yool AJ, Stamer WD. Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res. 2009;89:95–100. https://doi.org/10.1016/j.exer.2009.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liton PB, et al. Induction of IL-6 expression by mechanical stress in the trabecular meshwork. Biochem Biophys Res Commun. 2005;337:1229–36. https://doi.org/10.1016/j.bbrc.2005.09.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Porter KM, Jeyabalan N, Liton PB. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. Biochim Biophys Acta. 2014;1843:1054–62. https://doi.org/10.1016/j.bbamcr.2014.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Okada Y, Matsuo T, Ohtsuki H. Bovine trabecular cells produce TIMP-1 and MMP-2 in response to mechanical stretching. Jpn J Ophthalmol. 1998;42:90–4. https://doi.org/10.1016/S0021-5155(97)00129-9.

    Article  CAS  PubMed  Google Scholar 

  118. Wu J, et al. Endogenous production of extracellular adenosine by trabecular meshwork cells: potential role in outflow regulation. Invest Ophthalmol Vis Sci. 2012;53:7142–8. https://doi.org/10.1167/iovs.12-9968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luna C, et al. Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2009;50:5805–10. https://doi.org/10.1167/iovs.09-3796.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Maddala R, Skiba NP, Rao PV. Vertebrate lonesome kinase regulated extracellular matrix protein phosphorylation, cell shape, and adhesion in trabecular meshwork cells. J Cell Physiol. 2017;232:2447–60. https://doi.org/10.1002/jcp.25582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Iyer P, et al. Autotaxin-lysophosphatidic acid axis is a novel molecular target for lowering intraocular pressure. PLoS One. 2012;7:e42627. https://doi.org/10.1371/journal.pone.0042627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mitton KP, et al. Transient Loss of αB-crystallin: an early cellular response to mechanical stretch. Biochem Biophys Res Commun. 1997;235:69–73. https://doi.org/10.1006/bbrc.1997.6737.

    Article  CAS  PubMed  Google Scholar 

  123. Tumminia SJ, et al. Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1998;39:1361–71.

    CAS  PubMed  Google Scholar 

  124. WuDunn D. The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells. Curr Eye Res. 2001;22:394–7.

    Article  CAS  Google Scholar 

  125. Bradley JM, et al. Effects of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2001;42:1505–13.

    CAS  PubMed  Google Scholar 

  126. Bradley JM, Kelley MJ, Rose A, Acott TS. Signaling pathways used in trabecular matrix metalloproteinase response to mechanical stretch. Invest Ophthalmol Vis Sci. 2003;44:5174–81.

    Article  Google Scholar 

  127. Raghunathan VK, et al. Transforming growth factor Beta 3 modifies mechanics and composition of extracellular matrix deposited by human trabecular meshwork cells. ACS Biomater Sci Eng. 2015;1:110–8. https://doi.org/10.1021/ab500060r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Torrejon KY, et al. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol Bioeng. 2013;110:3205–18. https://doi.org/10.1002/bit.24977.

    Article  CAS  PubMed  Google Scholar 

  129. Torrejon KY, et al. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci Rep. 2016;6:38319. https://doi.org/10.1038/srep38319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chu ER, Gonzalez JM, Tan JCH. Tissue-based imaging model of human trabecular meshwork. J Ocul Pharmacol Ther. 2014;30:191–201. https://doi.org/10.1089/jop.2013.0190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gonzalez JM, Hamm-Alvarez S, Tan JCH. Analyzing live cellularity in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2013;54:1039–47. https://doi.org/10.1167/iovs.12-10479.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gonzalez JM, Heur M, Tan JCH. Two-photon immunofluorescence characterization of the trabecular meshwork in situ. Invest Ophthalmol Vis Sci. 2012;53:3395–404. https://doi.org/10.1167/iovs.11-8570.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VijayKrishna Raghunathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghunathan, V. (2021). Biomechanical Properties of the Trabecular Meshwork in Aqueous Humor Outflow Resistance. In: Pallikaris, I., Tsilimbaris, M.K., Dastiridou, A.I. (eds) Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-64422-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64422-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64421-5

  • Online ISBN: 978-3-030-64422-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics