Skip to main content

Parallel Robots

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Parallel robot (PR) is a mechanical system that utilized multiple computer-controlled limbs to support one common platform or end effector. Comparing to a serial robot, a PR generally has higher precision and dynamic performance and, therefore, can be applied to many applications. The PR research has attracted a lot of attention in the last three decades, but there are still many challenging issues to be solved before achieving PRs’ full potential. This chapter introduces the state-of-the-art PRs in the aspects of synthesis, design, analysis, and control. The future directions will also be discussed at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altuzarra O, Hernandez A, San Martin Y, Larranaga J (2009) Parallel kinematics for machine tools. In: Lopez de Lacalle LN, Lamikiz A (eds) Machine tools for high performance machining. Springer, London

    Google Scholar 

  • Altuzarra O, Pinto C, Sandru B, Hernandez A (2011) Optimal dimensioning for parallel manipulators: workspace, dexterity, and energy. ASME J Mech Des 133:1–7

    Article  Google Scholar 

  • Åström KJ, Hägglund T (2001) The future of PID control. Control Eng Pract 9:1163–1175. doi:10.1016/S0967-0661(01)00062-4

    Article  Google Scholar 

  • Baron L, Angeles J (2000) The direct kinematics of parallel manipulators under joint sensor redundancy. IEEE Trans Robot Autom 16(1):12–19

    Article  Google Scholar 

  • Bayo E, Movaghar R, Medus M (1988) Inverse dynamics of a single-link flexible robot: analytical and experimental results. Int J Robot Res 3:150–157

    Google Scholar 

  • Beji L, Abichou A, Pascal M (1998) Tracking control of a parallel robot in the task space. In: International conference on robotics and automation ICRA98, Leuven, pp 2309–2314

    Google Scholar 

  • Belda K, Bohm J (2006) Predictive control of redundant parallel robots and trajectory planning. In: Chemnitz parallel kinematic seminar, Chemnitz/Allemagne, pp 497–513

    Google Scholar 

  • Belda K, Böhm J, Valasek M (2003) State-space generalized predictive control for redundant parallel robots. Mech Based Des Struct Mach 31:413–432

    Article  Google Scholar 

  • Bi ZM, Jin Y (2011) Kinematic modeling of Exechon parallel kinematic machine. Robot Comput Integr Manuf 27:186–193. doi:10.1016/j.rcim.2010.07.006

    Article  Google Scholar 

  • Bingül Z, Karahan O (2011) A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst Appl 38:1017–1031. doi:10.1016/j.eswa.2010.07.131

    Article  Google Scholar 

  • Bleicher F, Gunther G (2004) Automatically operating calibration method for a three-axis parallel kinematic machine. In: 4th Chemnitz parallel kinematic seminar, Chemnitz, pp 165–181

    Google Scholar 

  • Bonev IA, Zlatanov D, Gosselin CM (2003) Singularity analysis of 3-DOF planar parallel mechanisms via screw theory. ASME J Mech Des 125:573–581

    Article  Google Scholar 

  • Bonnemains T, Chanal H, Bouzgarrou B-C, Ray P (2009) Stiffness computation and identification of parallel kinematic machine tools. J Manuf Sci Eng 131:1–7

    Article  Google Scholar 

  • Bonnemains T, Chanal H, Bouzgarrou BC, Ray P (2013) Dynamic model of an overconstrained PKM with compliance: the Tripteor X7. Robot Comput Integr Manuf 29:180–191. doi:10.1016/j.rcim.2012.05.003

    Article  Google Scholar 

  • Book WJ (1984) Recursive Lagrangian dynamics of flexible manipulator arms. Int J Robot Res 3:87–101

    Article  Google Scholar 

  • Bouzgarrou BC, Thuilot B, Ray P, Gogu G (2002) Modeling of flexible manipulators applied to HSMW machine tools. Mech Ind 3:173–180

    Google Scholar 

  • Boyer F, Coiffet P (1996) Symbolic modeling of a flexible manipulator via assembling of its generalized Newton-Euler model. Mech Mach Theory 31:45–56

    Article  Google Scholar 

  • Bruyninckx H (1999) Dualities between serial and parallel 321 manipulators. In: International conference on intelligent robots and systems IROS99, Detroit, pp 1532–1537

    Google Scholar 

  • Carbone G, Ottaviano E, Ceccarelli M (2007) An optimum design procedure for both serial and parallel manipulators. Proc Inst Mech Eng Part C J Mech Eng Sci 221:829–843

    Article  Google Scholar 

  • Cardou P, Bouchard S, Gosselin C (2010) Kinematic-sensitivity indices for dimensionally nonhomogeneous Jacobian matrices. IEEE Trans Robot 26(1):166–173

    Article  Google Scholar 

  • Carmona Rodriguez R, Yu W, Rosen J (2012) PID control for robot manipulators with neural compensation. In: World automation congress, WAC, Mexico, pp 1–6

    Google Scholar 

  • Castelli G, Ottaviano E, Ceccarelli M (2008) A fairly general algorithm to evaluate workspace characteristics of serial and parallel manipulators. Mech Based Des Struct Mach 36:14–33

    Article  Google Scholar 

  • Chablat D, Wenger P (2003) Architecture optimization of a 3-dof translational parallel mechanism for machining applications, the orthoglide. IEEE Trans Robot Autom 19(3):403–410

    Article  Google Scholar 

  • Chanal H, Duc E, Ray P, Hascoët JY (2006) A study of the impact of machine tool structure on machining processes. Int J Mach Tool Manuf 46:98–106. doi:10.1016/j.ijmachtools.2005.05.004

    Article  Google Scholar 

  • Chanal H, Duc E, Ray P, Hascoët JY (2007) A new approach for the geometrical calibration of parallel kinematics machines tools based on the machining of a dedicated part. Int J Mach Tools Manuf 47:1151–1163

    Article  Google Scholar 

  • Chen I-M (2001) Rapid response manufacturing through reconfigurable robotic workcells. J Robot Comput Integr Manuf 17(3):199–213

    Article  Google Scholar 

  • Chen JS, Hsu WY (2004) Design and analysis of a tripod machine tool with an integrated Cartesian guiding and metrology mechanism. Precis Eng 28:46–57. doi:10.1016/S0141-6359(03)00073-4

    Article  Google Scholar 

  • Chiu Y, Perng M (2001) Forward kinematics of a general fully parallel manipulator with auxiliary sensors. Int J Robot Res 20(5):401–414

    Article  Google Scholar 

  • Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized predictive control – part I. The basic algorithm. Automatica 23:137–148. doi:10.1016/0005-1098(87)90087-2

    Article  MATH  Google Scholar 

  • Clavel R, Sogeva SA (1990) Device for the movement and positioning of an element in space. US Patent, US4976582

    Google Scholar 

  • Cobet M (2002) Designing PKMs: working volume, stiffness, frequencies. Parallel kinematic machines in research and practice. Verlag Wissenschaftliche Scripten, Zwickau/Chemnitz, pp 83–103

    Google Scholar 

  • Company O, Pierrot F, Choi HB (2003) Design and control of a novel 4-DOFs parallel robot H4. In: ICRA03 international conference on robotics and automation, Taipei, Taiwan, pp 1185–1190

    Google Scholar 

  • Corbel D, Company O, Pierrot F (2008) Optimal design of a 6-dof parallel measurement mechanism integrated in a 3-dof parallel machine-tool. In: Intelligent and robotics systems 2008, IROS 2008 IEEERSJ international conference, Nice, France, pp 1970–1976

    Google Scholar 

  • Cosson P, Bettaieb F, Hascoët JY (2006) Modeling of a high speed machining center with a multibody approach. In: Proceedings of the fifth international conference high speed machining, Metz

    Google Scholar 

  • Cuvillon L, Laroche E, Gangloff J, de Mathelin M (2005) GPC versus H-infinity control for fast visual servoing of a medical manipulator including flexibilities. In: IEEE international conference on robotics and automation ICRA05, Barcelone, Espagne pp 4044–4049

    Google Scholar 

  • D’Emilia G, Marra A, Natale E (2007) Use of neural networks for quick and accurate auto-tuning of PID controller. Robot Comput Integr Manuf 23:170–179. doi:10.1016/j.rcim.2006.04.001

    Article  Google Scholar 

  • Dallej T, Andreff N, Martinet P (2006) Visual servoing of Par4 using leg observation. In: 32nd annual conference of the IEEE Industrial Electronics Society, Paris, pp 3782–3787

    Google Scholar 

  • Dallej T, Andreff N, Mezouar Y, Martinet P (2006) 3D pose visual servoing relieves parallel robot control from joint sensing. In: International conference on intelligent robots and systems IROS06, Beijing, pp 4291–4296

    Google Scholar 

  • Deblaise D, Maurine P (2006) Analytical modeling of redundant PKM stiffness using matrix structural analysis. Parallel kinematic machines in research and practice. Verlag Wissenschaftliche Scripten, Chemnitz/Zwickau, pp 155–174

    Google Scholar 

  • Dorato P, Fortuna L, Muscato G (1992) Robust control for unstructured perturbations – an introduction. Control Inf Sci 168, Springer Verlag, New York

    Google Scholar 

  • Dwivedy SK, Eberhard P (2006) Dynamic analysis of flexible manipulators, a literature review. Mech Mach Theory 41:749–777. doi:10.1016/j.mechmachtheory.2006.01.014

    Article  MATH  MathSciNet  Google Scholar 

  • Fan KC, Wang H, Zhao JW, Chang TH (2003) Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool. Int J Mach Tools Manuf 43:1561–1569. doi:10.1016/S0890-6955(03)00202-5

    Article  Google Scholar 

  • Fang Y, Tsai LW (2004) Structure synthesis of a class of 3-dof rotational parallel manipulators. IEEE Trans Robot Autom 20(1):117–121

    Article  Google Scholar 

  • Fernandez J (2004) High performance algorithm to obtain Johansson adaptive control in robot manipulators. Commun Nonlinear Sci Numer Simul 9:167–176

    Article  MATH  MathSciNet  Google Scholar 

  • Franck LL, Darren MD, Chaouki TA (2004) Robot manipulator control, theory and practice. Marcel Dekker, New York/Basel

    Google Scholar 

  • Ginhoux R, Gangloff J, de Mathelin M et al (2005) Active filtering of physiological motion in robotized surgery using predictive control. Robot IEEE Trans 21:67–79

    Article  Google Scholar 

  • Gosselin C (1990) Determination of the workspace of 6-DOF parallel manipulators. ASME J Mech Des 112:331–336

    Article  Google Scholar 

  • Gosselin C, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE J Robot Autom 6(3):281–290

    Article  Google Scholar 

  • Gosselin C, Angeles J (1991) A global performance index for the kinematic optimization of robotic manipulators. ASME J Mech Des 113:220–226

    Article  Google Scholar 

  • Gosselin CM, Pierre E, Gagne M (1996) On the development of the agile eye. IEEE Trans Robot Autom 3(4):29–37

    Article  Google Scholar 

  • Herve JM (1991) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(8):719–730

    MathSciNet  Google Scholar 

  • Honegger M, Brega R, Schweitzer G (2000) Application of a nonlinear adaptive controller to a 6 DOF parallel manipulator. In: IEEE international conference on robotics and automation ICRA00, San Francisco, pp 1930–1935

    Google Scholar 

  • Huang DTY, Lee JJ (2001) On obtaining machine tool stiffness by CAE techniques. Int J Mach Tools Manuf 41:1149–1163. doi:10.1016/S0890-6955(01)00012-8

    Article  Google Scholar 

  • Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145

    Article  Google Scholar 

  • Huang Z, Li QC (2003) Type synthesis of symmetrical lower-mobility parallel manipulators using the constraint-synthesis method. Int J Robot Res 22(1):59–79

    Google Scholar 

  • Huang T, Chetwynd DG, Gosselin CM, Li Z, Li M (2003) Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. J Mech Des 126(3):449–455

    Article  Google Scholar 

  • Huang T, Li M, Zhao X, Mei J, Whitehouse D, Hu S (2005a) Conceptual design and dimensional synthesis for a 3-dof module of the TriVariant – a novel 5-dof reconfigurable hybrid robot. IEEE Trans Robot Autom 21(3):449–456

    Article  Google Scholar 

  • Huang T, Chetwynd DG, Whitehouse DJ, Wang J (2005b) A general and novel approach for parameter identification of 6-DOF parallel kinematic machines. Mech Mach Theory 40:219–239. doi:10.1016/j.mechmachtheory.2004.06.009

    Article  MATH  Google Scholar 

  • Huang T, Liu S, Mei J, Chetwynd DG (2013) Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints. Mech Mach Theory 70:246–253

    Article  Google Scholar 

  • Jin Y, Chen IM, Yang G (2006a) Kinematic design of a 6-dof parallel manipulator with decoupled translation and rotation. IEEE Trans Robot 22(3):545–561

    Article  Google Scholar 

  • Jin Y, Chen I-M, Yang G (2006b) Kinematic design of a 6-dof parallel manipulator with decoupled translation and rotation. IEEE Trans Robot 22(3):545–551

    Article  Google Scholar 

  • Jin Y, Chen IM, Yang G (2009) Kinematic design of a family of 6-DOF partially decoupled parallel manipulators. Mech Mach Theory 44(5):912–922

    Article  MATH  Google Scholar 

  • Jin Y, Chen I-M, Yang G (2011) Workspace evaluation of manipulators through finite-partition of SE(3). Robot Comput Integr Manuf 27(4):850–859

    Article  Google Scholar 

  • Katz R, Li Z (2004) Kinematic and dynamic synthesis of a parallel kinematic high speed drilling machine. Int J Mach Tool Manuf 44:1381–1389. doi:10.1016/j.ijmachtools.2004.04.007

    Article  Google Scholar 

  • Kelly R, Santibáñez V, Loria A (2005) Control of robot manipulators in joint space. Springer, London

    Google Scholar 

  • Khalil W, Dombre E (2002) Modeling, identification and control of robots. Hermes Penton Science, London/Paris

    Google Scholar 

  • Khalil W, Dombre E (2004) Modeling, identification and control of robots. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Khalil W, Ibrahim O (2007) General solution for the dynamic modeling of parallel robots. J Intell Robot Syst 49:19–37

    Article  Google Scholar 

  • Kim HS, Cho Y, Lee KL (2005) Robust nonlinear task space control for 6 DOF parallel manipulator. Automatica 41:1591–1600

    Article  MATH  MathSciNet  Google Scholar 

  • Kong X, Gosselin CM (2004) Type synthesis of 3t1r 4-dof parallel manipulators based on screw theory. IEEE Trans Robot Autom 20(2):181–190

    Article  Google Scholar 

  • Kong X, Gosselin C (2007) Type synthesis of parallel mechanisms. Verlag Berlin, Berlin/Heidelberg

    MATH  Google Scholar 

  • Kumar V (1992) Characterization of workspaces of parallel manipulators. ASME J Mech Des 114:368–375

    Article  Google Scholar 

  • Lammerts I (1993) Adaptive computed reference computed torque control of flexible manipulators. Thèse, Technical University Eindhoven

    Google Scholar 

  • Li Q, Hervé JM (2010) 1T2R parallel mechanisms without parasitic motion. Robot IEEE Trans 26(3):401–410

    Article  Google Scholar 

  • Li Y, Xu Q (2006) A new approach to the architecture optimization of a general 3-puu translational parallel manipulator. J Intell Robot Syst 46(1):59–72

    Article  Google Scholar 

  • Li Q, Huang Z, Hervé JM (2004) Type synthesis of 3r2t 5-dof parallel mechanisms using the lie group of displacements. IEEE Trans Robot Autom 20(2):173–180

    Article  MATH  Google Scholar 

  • Liu XJ (2006) Optimal kinematic design of a three translational DoFs parallel manipulator. Robotica 24(2):239–250

    Article  MATH  Google Scholar 

  • Liu X, Gao F (2000) Optimum design of 3-dof spherical parallel manipulators with respect to the conditioning and stiffness indices. Mech Mach Theory 35:1257–1267

    Article  Google Scholar 

  • Liu XJ, Wang J (2007) A new methodology for optimal kinematic design of parallel mechanisms. Mech Mach Theory 42(9):1210–1224

    Article  MATH  Google Scholar 

  • Liu H, Huang T, Mei J, Zhao X, Chetwynd DG, Li M, Hu SJ (2007) Kinematic design of a 5-DOF hybrid robot with large workspace/Limb–Stroke ratio. J Mech Des 129:530–537

    Article  Google Scholar 

  • Lou Y, Liu G, Xu J, Li Z (2004) A general approach for optimal kinematic design of parallel manipulators. In: Proceedings of IEEE conference on robotics and automation, New Orleans, 26 April–1 May, pp 3659/3664

    Google Scholar 

  • Luh JY, Walker MW, Paul RC (1980) Resolved acceleration control of mechanical manipulators. IEEE Trans Autom Control 25:468–474

    Article  MATH  Google Scholar 

  • Majou F, Gosselin C, Wenger P, Chablat D (2007) Parametric stiffness analysis of the orthoglide. Mech Mach Theory 42:296–311. doi:10.1016/j.mechmachtheory.2006.03.018

    Article  MATH  Google Scholar 

  • Martinez L, Collado V (2004) Calibration of a hybrid serial/parallel 5-axes milling machine using a double bar probe. In: 4th Chemnitz parallel kinematic seminar, Chemnitz, pp 137–150

    Google Scholar 

  • Merlet JP (2000) Parallel robots. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Merlet JP (2002) Still a long way to go on the road for parallel mechanisms. In: ASME 27th biennial mechanisms and robotics conference, Montreal, Canada

    Google Scholar 

  • Merlet J (2006) Jacobian, manipulability, condition number, and accuracy of parallel robots. ASME J Mech Des 128(1):199–206

    Article  Google Scholar 

  • Merlet JP, Gosselin CM, Mouly N (1998) Workspaces of planar parallel manipulators. Mech Mach Theory 33(1):7–20

    Article  MATH  MathSciNet  Google Scholar 

  • Monsarrat B, Gosselin CM (2003) Workspace analysis and optimal design of a 3-leg 6-dof parallel platform mechanism. IEEE Trans Robot Autom 19(6):954–966

    Article  Google Scholar 

  • Nabat V, Krut S, Company O, Poignet P, Pierrot F (2008) On the design of a fast parallel robot based on its dynamic model. Exp Robot 39:409–419. doi:10.1007/978-3-540-77457-0_38

    Article  Google Scholar 

  • Neugebauer R, Wieland F, Schwaar M, Hochmuth C (1999) Experiences with a hexapod-based machine tool. In: Boer CR, Molinari-Tosatti L, Smith KS (eds) Parallel kinematic machines: theoretical aspects and industrial requirement. Springer, London

    Google Scholar 

  • Notash L, Podhorodeski RP (1995) On the forward displacement problem of three branch parallel manipulators. Mech Mach Theory 30(3):391–404

    Article  Google Scholar 

  • Oh SR, Mankala K, Agrawal SK (2004) Dynamic modeling and robust controller design of a two-stage parallel cable robot. In: International conference on robotics and automation ICRA04, New Orleans, pp 3678–3683

    Google Scholar 

  • Ottaviano E, Ceccarelli M (2002) Optimal design of Capaman (Cassino parallel manipulator) with a specified orientation workspace. Robotica 20:159–166

    Article  Google Scholar 

  • Paccot F, Andreff N, Martinet P (2007) Revisiting the major dynamic control strategies of parallel robots. In: European control conference ECC, Kos, pp 4377–4384

    Google Scholar 

  • Paccot F, Lemoine P, Andreff N et al (2008) A vision-based computed torque control for parallel kinematic machines. In: IEEE international conference on robotics and automation ICRA08, Pasadena, pp 1556–1561

    Google Scholar 

  • Paccot F, Andreff N, Martinet P (2009a) A review on the dynamic control of parallel kinematic machines: theory and experiments. Int J Robot Res 28:395–416. doi:10.1177/0278364908096236

    Article  Google Scholar 

  • Paccot F, Andreff N, Martinet P (2009b) A review on dynamic control of parallel kinematic machine: theory and experiments. Int J Robot Res 28:395–416

    Article  Google Scholar 

  • Pashkevich A, Chablat D, Wenger P (2009) Stiffness analysis of overconstrained parallel manipulators. Mech Mach Theory 44:966–982. doi:10.1016/j.mechmachtheory.2008.05.017

    Article  MATH  Google Scholar 

  • Patel AJ, Ehmann KF (2000) Calibration of a hexapod machine tool using a redundant leg. Int J Mach Tools Manuf 40:489–512. doi:10.1016/S0890-6955(99)00081-4

    Article  Google Scholar 

  • Pierrot F, Nabat V, Krut S, Poignet P (2009) Optimal design of a 4-dof parallel manipulator: from academia to industry. Robot IEEE Trans 25(2):213–224

    Article  Google Scholar 

  • Pritschow G, Eppler C, Garber T (2002) Influence of the dynamic stiffness on the accuracy of PKM. Parallel kinematic machines in research and practice. Verlag Wissenschaftliche Scripten, Zwickau/Chemnitz, pp 313–333

    Google Scholar 

  • Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME J Mech Des 115:277–282

    Article  Google Scholar 

  • Ramdani N, Gouttefarde M, Pierrot F, Merlet JP (2008) First results on the design of high speed parallel robots in presence of uncertainty. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, pp 2410–2415

    Google Scholar 

  • Renaud P, Vivas A, Andreff N, Poignet P, Martinet P, Pierrot F, Company O (2006) Kinematic and dynamic identification of parallel mechanisms. Con Eng Prac 14:1099–1109. doi:10.1016/j.conengprac.2005.06.011

    Article  Google Scholar 

  • Richalet J (1993) Industrial applications of model based predictive control. Automatica 29:1251–1274. doi:10.1016/0005-1098(93)90049-Y

    Article  MathSciNet  Google Scholar 

  • Rizk R, Fauroux JC, Munteanu M, Gogu G (2006) A comparative stiffness analysis of a reconfigurable parallel machine with three or four degrees of mobility. J Mach Eng 6:45–55

    Google Scholar 

  • Robin V, Sabourin L, Gogu G (2007) Optimization of a redundant robotized cell: application to the finishing of cast parts. In: Proceedings of the 13th international conference on robotics and applications (IASTED 2007), Wuzburg, Germany, pp 29–31

    Google Scholar 

  • Shabana AA (2005) Dynamics of multibody systems. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Song J, Mou JI, King C (1999) Error modeling and compensation for parallel kinematic machine. In: Boer CR, Molinari-Tosatti L, Smith KS (eds) Parallel kinematic machines: theoretical aspects and industrial requirement. Springer, London, pp 170–187

    Google Scholar 

  • Song Z, Yi J, Zhao D, Li X (2005) A computed torque controller for uncertain robotic manipulator systems: fuzzy approach. Fuzzy Sets Syst 154:208–226

    Article  MATH  MathSciNet  Google Scholar 

  • Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York

    Google Scholar 

  • Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(15):371–386

    Article  Google Scholar 

  • Sun Z, Xing R, Zhao C, Huang W (2007) Fuzzy auto-tuning {PID} control of multiple joint robot driven by ultrasonic motors. Ultrasonics 46:303–312. doi:10.1016/j.ultras.2007.04.001

    Article  Google Scholar 

  • Terrier M, Dugas A, Hascoët JY (2004) Qualification of parallel kinematics machines in high-speed milling on free form surfaces. Int J Mach Tools Manuf 44:865–877. doi:10.1016/j.ijmachtools.2003.11.003

    Article  Google Scholar 

  • Tounsi N, Otho A (2000) Identification of machine–tool–workpiece system dynamics. Int J Mach Tools Manuf 40:1367–1384. doi:10.1016/S0890-6955(99)00123-6

    Article  Google Scholar 

  • Tournier C (2010) Usinage à Grande Vitesse – Technologies, Modélisation et Trajectoires, Dunod, Paris

    Google Scholar 

  • Tsai LW (1999) Robot analysis. Wiley, New York

    Google Scholar 

  • Tsai LW (2001) Mechanism design: enumeration of kinematic structures according to function. CRC Press, New York

    Google Scholar 

  • Vivas A, Poignet P (2005) Predictive functional control of a parallel robot. Control Eng Pract 13:863–874. doi:10.1016/j.conengprac.2004.10.001

    Article  Google Scholar 

  • Wang LT, Chen CC (1993) On the numerical kinematic analysis of general parallel robotic manipulators. IEEE Trans Robot Autom 9(3):272–285

    Article  Google Scholar 

  • Wang X, Mills JK (2006) Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach. Mech Mach Theory 41:671–687. doi:10.1016/j.mechmachtheory.2005.09.009

    Article  MATH  Google Scholar 

  • Wang Y, Huang T, Zhao X, Mei J, Chetwynd D, Hu S (2006) Finite element analysis and comparison of two hybrid robots – the Tricept and the TriVariant. In: International conference on intelligent robots and systems, pp 490–495

    Google Scholar 

  • Weck M, Staimer D (2002) Parallel kinematic machine tools – current state and future potentials. CIRP Ann 51:671–681. doi:10.1016/S0007-8506(07)61706-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Jin, Y., Chanal, H., Paccot, F. (2015). Parallel Robots. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_99

Download citation

Publish with us

Policies and ethics